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Application I/O

 Applications have data models appropriate to 
domain

– Multidimensional typed arrays, images composed 
of scan lines, variable length records

– Headers, attributes on data

 I/O systems have very simple data models
– Tree-based hierarchy of containers
– Some containers have streams of bytes (files)
– Others hold collections of other containers 

(directories or folders)

 Someone has to map from one to the other!

Graphic from J. Tannahill, LLNL

Graphic from A. Siegel, ANL



Common Approaches to Application I/O

 Root performs I/O
Pro: trivially simple for “small” I/O
Con: bandwidth limited by rate one client can sustain
Con: may not have enough memory on root to hold all data

 All processes access their own file
Pro: no communication or coordination necessary between processes
Pro: avoids some file system quirks (e.g. false sharing)
Con: for large process counts, lots of files created
Con: data often must be post-processed to recreate canonical dataset
Con: uncoordinated I/O from all processes may swamp I/O system

 All processes access one file
Pro: only one file (per timestep etc.) to manage: fewer files overall
Pro: data can be stored in canonical representation, avoiding post-

processing
Con: can uncover inefficiencies in file systems (e.g. false sharing)
Con: uncoordinated I/O from all processes may swamp I/O system



Challenges in Application I/O

 Leveraging aggregate communication and I/O bandwidth of clients
 …But not overwhelming a resource limited I/O system with uncoordinated 

accesses!
 Limiting number of files that must be managed (also a performance issue)
 Avoiding unnecessary post-processing
 Avoiding file system quirks

 Often application teams spend so much time on this that they never get 
any further:
– Interacting with storage through convenient abstractions
– Storing in portable formats

 Computer science teams that are experienced in parallel I/O have 
developed software to tackle all of these problems
– Not the application's job.
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Application

File System

I/O Hardware

Software for Parallel I/O in HPC

 Applications require more software than just a parallel file system
 Support provided via multiple layers with distinct roles:

– Parallel file system maintains logical space, provides efficient access to 
data (e.g. PVFS, GPFS, Lustre)

– I/O Forwarding found on largest systems to assist with I/O scalability
– Middleware layer deals with organizing access by many processes

(e.g. MPI-IO, UPC-IO)
– High level I/O library maps app. abstractions to a structured,

portable file format (e.g. HDF5, Parallel netCDF)
 Goals: scalability, parallelism (high bandwidth), and usability

High-level I/O Library

I/O Middleware (MPI-IO)

Parallel File System

I/O Hardware

Application

I/O Forwarding



Why All This Software?

“All problems in computer science can be solved by another level of 
indirection." -- David Wheeler

 Parallel file systems must be general purpose to be viable products
– Many workloads for parallel file systems still include serial codes
– Most of our tools still operate on the UNIX “byte stream” file model

 I/O forwarding addresses HW constraints and helps us leverage existing file 
system implementations at greater (unintended?) scales

 Programming model developers are not (usually) file system experts
– Implementing programming model optimizations on top of common file 

system APIs provides flexibility to move to new file systems
– Again, trying to stay as general purpose as possible

 High level I/O libraries mainly provide convenience functionality on top of 
existing APIs
– Specifically attempting to cater to specific data models
– Enable code sharing between applications with similar models
– Standardize how contents of files are stored

7
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The Parallel Virtual File System (PVFS)
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Parallel Virtual File System (PVFS)

 File-based storage model, very similar to object based storage model
– Fragments of files stored on distributed IO Servers (IOS)

• I/O servers manage their own local storage
– Single server type can also store metadata
– Clients perform accesses in terms of byte ranges in files (region-oriented)

 Available for Linux OS and IBM Blue Gene systems
 Tightly-coupled MPI-IO implementation

An example PVFS file system, with large astrophysics checkpoints distributed across multiple I/O 
servers (IOS), while small bioinformatics files are each stored on a single IOS.
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PVFS Architecture

 Communication performed over existing 
cluster network
– TCP/IP, InfiniBand, Myrinet, Portals

 Servers store data in local file systems 
(e.g. ext3, XFS)
– Local files store PVFS file strips
– Berkeley DB currently used for 

metadata (rather than files)
 Mixed kernel-space, user-space 

implementation
– VFS module in kernel with user-space 

helper process
– User-space servers, interface for 

kernel bypass on clients
 Commodity failover (e.g. Heartbeat) may 

be used to set up active-active server 
configuration for both metadata and data
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...

Directory Metafile Datafiles

PVFS Files and Directories

 PVFS files are made up of objects holding
data (dataspaces) and a distribution function

 Directory dataspace holds metafile handles
 Metafile dataspace holds

– Permissions, owner, extended attributes
– References to dataspaces holding data
– Parameters for distribution function

 Datafiles hold the file data itself
– Usually one datafile on each server for parallelism

 Distribution function determines how data in datafiles maps into logical file
– By default file data is split into 64Kbyte blocks and distributed round-

robin into datafiles
– Because list of datafiles and distribution function don’t change, clients 

may cache this information indefinitely
• No communication with server holding metadata during I/O
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State, Consistency, and Caching

 In GPFS and Lustre, clients are allowed to hold on to important file system state
– Locks are used to keep these in sync with data on storage or to prevent other 

clients from accessing the data until it is committed
– Locks (which are state themselves) are further used for atomic I/O
– Problems: lock traffic is nondeterministic, client death becomes complicated

 PVFS does not hold critical file system state on clients (stateless)
– Clients may appear and disappear without impacting file system

• Much like a web server
– PVFS does provide a coherent view of file data

• Processes immediately see changes from others
– Does not provide atomic writes or reads

• Other software responsible for this coordination (e.g. MPI-IO)
– Does provide atomic metadata operations

• Creating and removing files and directories atomically change the name space
– No locks necessary!

 Without locks to maintain coherence, caching possibilities are very limited
– Clients cache immutable metadata on files allowing I/O without metadata access
– Data caching restricted to executables and mmapped files (read-only)
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MPI-IO Interface
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MPI-IO

 The Message Passing Interface (MPI) is an interface standard for writing 
message passing programs
– Most popular programming model on HPC systems

 MPI-IO is an I/O interface specification for use in MPI apps
 Data model is same as POSIX

– Stream of bytes in a file
 Features:

– Collective I/O
– Noncontiguous I/O with MPI datatypes and file views
– Nonblocking I/O
– Fortran bindings (and additional languages)

 Implementations available on most platforms (more later)
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Challenge: Describing Application Data

 MPI_Type_create_subarray can describe any N-dimensional subarray of 
an N-dimensional array

 In this case we use it to pull out a 2-D tile
 Tiles can overlap if we need them to
 Separate MPI_File_set_view call uses this type to select the file region
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Challenge: Efficient File Creation

 File create rates can actually have a 
significant performance impact

 Improving the file system interface improves 
performance for computational science
– Leverage communication in MPI-IO layer

...

...

File system interfaces force all 
processes to open a file, causing 
a storm of system calls.

...

...

MPI-IO can leverage other 
interfaces, avoiding this 
behavior.

Time to Create Files Through MPI-IO

16
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Challenge: Coordinating I/O

 Independent I/O operations specify only what a single process will do
– Independent I/O calls do not pass on relationships between I/O on other processes 

 Many applications have phases of computation and I/O
– During I/O phases, all processes read/write data
– We can say they are collectively accessing storage

 Collective I/O is coordinated access to storage by a group of processes
– Collective I/O functions are called by all processes participating in I/O
– Allows I/O layers to know more about access as a whole, more opportunities for 

optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O
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The Two-Phase I/O Optimization

 Problems with independent, noncontiguous access
– Lots of small accesses

– Independent data sieving reads lots of extra data, can exhibit false sharing

 Idea: Reorganize access to match layout on disks
– Single processes use data sieving to get data for many

– Often reduces total I/O through sharing of common blocks

 Second “phase” redistributes data to final destinations
 Two-phase writes operate in reverse (redistribute then I/O)

– Typically read/modify/write (like data sieving)

– Overhead is lower than independent access because there is little or no false sharing

 Aggregating to fewer nodes as part of this process is trivial (and implemented!)

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/OInitial State Phase 2: Redistribution
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Process 0 Process 0 Process 0Process 0

Challenge: Noncontiguous I/O

 Contiguous I/O moves data from a single memory block into a single file region
 Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
 Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)
 Describing noncontiguous accesses with a single operation passes more knowledge 

to I/O system

Contiguous Noncontiguous
in File

Noncontiguous
in Memory

Noncontiguous
in Both
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Noncontiguous I/O: Data Sieving

Buffer

Memory

File

Data Sieving Read Sequence

 Data sieving is used to combine lots 
of small accesses into a single larger 
one
– Remote file systems (parallel or 

not) tend to have high latencies
– Reducing # of operations 

important
 Similar to how a block-based file 

system interacts with storage
 Generally very effective, but not as 

good as having a PFS that supports 
noncontiguous access
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MPI-IO Wrap-Up

 MPI-IO provides a rich interface allowing us to describe
– Noncontiguous accesses in memory, file, or both
– Collective I/O

 This allows implementations to perform many transformations that result in 
better I/O performance

 Still a big gap between application and MPI-IO storage models
 Forms solid basis for high-level I/O libraries

– But they must take advantage of these features!
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Higher Level I/O Interfaces
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Challenge: Improving Usability of Storage

 High level libraries are designed to make life easier for application writers
 Present APIs more appropriate for computational science

– Typed data
– Noncontiguous regions in memory and file
– Multidimensional arrays and I/O on subsets of these arrays

 Provide structure to files
– Well-defined, portable formats
– Self-describing
– Organization of data in file
– Interfaces for discovering contents

 Both of our example interfaces are implemented on top of MPI-IO
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PnetCDF Interface and File Format
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Parallel netCDF (PnetCDF)

 Based on original “Network Common Data Format” (netCDF) work from 
Unidata
– Derived from their source code

 Data Model:
– Collection of variables in single file
– Typed, multidimensional array variables
– Attributes on file and variables

 Features:
– C and Fortran interfaces
– Portable data format (identical to netCDF)
– Noncontiguous I/O in memory using MPI datatypes
– Noncontiguous I/O in file using sub-arrays
– Collective I/O

 Unrelated to netCDF-4 work
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netCDF/PnetCDF Files

 PnetCDF files consist of three regions
– Header
– Non-record variables (all dimensions specified)
– Record variables (ones with an unlimited 

dimension)
 Record variables are interleaved, so using more than 

one in a file is likely to result in poor performance due 
to noncontiguous accesses

 Data is always written in a big-endian format
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Data in PnetCDF

 Write case: “bimodal”
 Create a dataset (file)

– Puts dataset in define mode
– Allows us to describe the contents

• Define dimensions for variables
• Define variables using dimensions
• Store attributes if desired (for variable or dataset)

 Switch from define mode to data mode to write variables
 Store variable data
 Close the dataset
 Read case similar: 

– No define mode
– Query dataset for attributes, variables
– Read data
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Example: FLASH with PnetCDF

 FLASH AMR structures do not map directly to netCDF multidimensional 
arrays

 Must create mapping of the in-memory FLASH data structures into a 
representation in netCDF multidimensional arrays

 Chose to
– Place all checkpoint data in a single file
– Impose a linear ordering on the AMR blocks

• Use 4D variables
– Store each FLASH variable in its own netCDF variable

• Skip ghost cells
– Record attributes describing run time, total blocks, etc.
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Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;
/* create dataset (file) */
status = ncmpi_create(MPI_COMM_WORLD, filename,

NC_CLOBBER, hints, &file_id);
/* define dimensions */
status = ncmpi_def_dim(ncid, "dim_tot_blks",

tot_blks, &dim_tot_blks);
status = ncmpi_def_dim(ncid, "dim_nxb",

nzones_block[0], &dim_nxb);
status = ncmpi_def_dim(ncid, "dim_nyb",

nzones_block[1], &dim_nyb);
status = ncmpi_def_dim(ncid, "dim_nzb",

nzones_block[2], &dim_nzb);

Each dimension gets
a unique reference
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Creating Variables

int dims = 4, dimids[4];
int varids[NVARS];
/* define variables (X changes most quickly) */
dimids[0] = dim_tot_blks;
dimids[1] = dim_nzb;
dimids[2] = dim_nyb;
dimids[3] = dim_nxb;
for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i],
NC_DOUBLE, dims, dimids, &varids[i]);

}

Same dimensions used
for all variables
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Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */
size_t start_4d[4], count_4d[4];
start_4d[0] = global_offset; /* different for each process */
start_4d[1] = start_4d[2] = start_4d[3] = 0;
count_4d[0] = local_blocks;
count_4d[1] = nzb;  count_4d[2] = nyb;  count_4d[3] = nxb;
for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing values of a single variable ... 
*/

/* collectively write out all values of a single variable */
ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d, 
        unknowns, 1, mpi_type);

}
status = ncmpi_close(file_id);

Typical MPI buffer-
count-type tuple
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Inside PnetCDF Define Mode

 In define mode (collective)
– Use MPI_File_open to create file at create time
– Set hints as appropriate (more later)
– Locally cache header information in memory

• All changes are made to local copies at each process
 At ncmpi_enddef 

– Process 0 writes header with MPI_File_write_at 
– MPI_Bcast result to others
– Everyone has header data in memory, understands placement of all 

variables
• No need for any additional header I/O during data mode!
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Inside PnetCDF Data Mode

 Inside ncmpi_put_vara_all (once per variable) 
– Each process performs data conversion into internal buffer
– Uses MPI_File_set_view  to define file region

• Contiguous region for each process in FLASH case
– MPI_File_write_all collectively writes data

 At ncmpi_close 
– MPI_File_close ensures data is written to storage

 MPI-IO performs optimizations
– Two-phase possibly applied when writing variables

 MPI-IO makes PFS calls
– PFS client code communicates with servers and stores data
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PnetCDF Wrap-Up

 PnetCDF gives us
– Simple, portable, self-describing container for data
– Collective I/O
– Data structures closely mapping to the variables described

 If PnetCDF meets application needs, it is likely to give good performance
– Type conversion to portable format does add overhead

 Some limits on (CDF-2) file format:
– Fixed-size variable:  < 4 GiB
– One record's worth of record variable: < 4 GiB
– 232 -1 records 
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HDF5 Interface and File Format
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HDF5

 Hierarchical Data Format, from the HDF Group (formerly of NCSA)
 Data Model:

– Hierarchical data organization in single file
– Typed, multidimensional array storage
– Attributes on dataset, data

 Features:
– C, C++, and Fortran interfaces
– Portable data format
– Optional compression (not in parallel I/O mode)
– Data reordering (chunking)
– Noncontiguous I/O (memory and file) with hyperslabs
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Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

HDF5 Files

 HDF5 files consist of groups, datasets, and attributes
– Groups are like directories, holding other groups and datasets
– Datasets hold an array of typed data

• A datatype describes the type (not an MPI datatype)
• A dataspace gives the dimensions of the array

– Attributes are small datasets associated with the file, a group, or another 
dataset
• Also have a datatype and dataspace
• May only be accessed as a unit
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HDF5 Data Chunking

 Apps often read subsets of arrays (subarrays)
 Performance of subarray access depends in part on how data is laid out in 

the file
– e.g. column vs. row major

 Apps also sometimes store sparse data sets
 Chunking describes a reordering of array data

– Subarray placement in file determined lazily
– Can reduce worst-case performance for subarray access
– Can lead to efficient storage of sparse data

 Dynamic placement of chunks in file requires coordination
– Coordination imposes overhead and can impact performance
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Inside HDF5

 MPI_File_open used to open file
 Because there is no “define” mode, file layout is determined at write time
 In HDF write call: 

– Processes communicate to determine file layout
• Process 0 performs metadata updates

– Call MPI_File_set_view
– Call MPI_File_write_all to collectively write

• If this was turned on
 User could have defined noncontiguous region in memory or file
 In FLASH application, data is kept in native format and converted at read 

time (defers overhead)
– Could store in some other format if desired

 At the MPI-IO layer:
– Metadata updates at every write are a bit of a bottleneck

• MPI-IO from process 0 introduces some skew
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Concluding Remarks
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Wrapping Up

 Computational science applications present a complex set of challenges with 
respect to their I/O needs
– Very high degrees of concurrency in access
– Very high bandwidth requirements, bursty I/O
– Effective means for mapping scientific data models into storage 

structures
 A layered software architecture has evolved (and is still evolving) to address 

the needs of these applications
– Relies on adequate hardware resources
– Also typically relies on a commercial parallel file system
– Software specific to HPC helps bridge the gap

 The gap is growing between the needs of computational science applications 
and the capabilities offered by storage vendors and commercial parallel file 
systems
– Opportunities for new approaches to make their way into the I/O 

software stack
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